两个参数各有优缺点,将两者的优势结合起来,使得进球数//失球数既能反映近期情况足球比赛预测模型,又能反映长期趋势的预测值,这就是这个模型的目的。失球数既能反映近期情况,又能反映长期趋势的预测值,这就是这个模型的目的。失球数既能反映近期情况,又能反映长期趋势的预测值,这就是这个模型的目的。无论是66场均值还是赛季均值,它们的共同特点就是“平均”场均值还是赛季均值,它们的共同特点就是“平均”,也就是对同一个平均因子的NN场比赛,取平均因子nnn。举个例子。举个例子。 比如66场平均,因子场均,因子场均,因子nn的值为n=1/6n=1/6,把比赛进球数(k1,k2,k3,k4,k5,k6k1,k2,k3,k4,k5,k6)分别乘以nn,然后加权,得到平均值KKK。统计学上,这叫移动平均法或者全周期。
在统计学中,这叫移动平均法或者全周期平均法。用全部n个观测值的算术平均值作为预测值。当数据的随机因素较大时,宜用较大个观测值的算术平均值作为预测值。当数据的随机因素较大时,宜用较大的NNN,这样有利于最大程度地平滑随机性带来的严重偏差;反之,当数据的随机因素较小时,宜用较小的NNN,这样有利于跟踪数据的变化,预测值的滞后周期数也较小。在足球比赛中,进球数和预测值的滞后周期数也较小。在足球比赛中,进球数的随机性比较大,因此NN应该选取比较大的值足球比赛预测模型,但是这样会造成预测数据过于平滑,不利于球队近期进球数据的预测。
预测。预测。除了移动平均法,还可以考虑另外一种预测方法——指数平滑法。这种方法在计算预测值时,对历史数据的观测值赋予不同的权重。这种方法和简单移动平均法类似,二者的区别在于简单指数平滑法会修正以前预测结果的误差。指数平滑法适用于数据观测值水平波动,没有明显的上升或下降趋势的情况,预测的一般公式是在有上升或下降趋势的情况下进行的预测。预测的一般公式为Sta=ayt+(1-a)St-1St=ayt+(1-a)St-1St=ayt+(1-a)St-1式中,St--St--St--时刻tt的平滑值;yt--yt--yt--时刻tt的实际值; St-1--St-1--St-1--t-1t-1时刻的实际值;a--平滑常数,其取值范围是[0,1][0,1][0,1];平滑常数其实就是前一次观测值和当前观测值之间的权重。
平滑常数其实就是前一次观测值和当前观测值之间的权重。当aa接近于11时,新的预测值对前一次预测值的误差做了较大的修正;当St=ytSt=ytSt=yt时,即平滑后的值等于tt期的观测值。当aa接近于00时,新的预测值只包含较小的误差修正因子;当St=St-1St=St-1St=St-1时,即本期的预测值等于上期的预测值。当aa接近于00时,新的预测值只包含较小的误差修正因子;当St=St-1St=St-1St=St-1时,即本期的预测值等于上期的预测值。当aa接近于00时,新的预测值只包含较小的误差修正因子; 当St=St-1St=St-1St=St-1时,即本期预测值等于上期预测值。足球比赛中某支球队的进球数在长期观察中呈现出与回归中位数相似的波动,因此应选取较小的值。下表以曼联主场进球数为例,说明使用方法。
通过表格处理来说明使用方法。 通过表格处理来说明使用方法。 16-1716-1716-1716-17赛季 曼联 曼联 曼联 vs vs vs StSt St 为主队预期进球值(预测值) 为主队预期进球值(预测值) 为主队预期进球值(预测值), 平滑常数, 平滑常数, 平滑常数aa值0.05 0.05 0.05,,, yt yt yt 轮次) 实际值轮次) 实际值22, St-1St-1 St-1 为上一轮的预测值1.716 1.716 1.716。 根据一般公式。 根据一般公式。 根据一般公式 Sta=ayt+(1-a)St-1 St=ayt+(1-a)St-1 St=ayt+(1-a)St-1,St=0.05*2+St=0.05*2+ St=0.05*2+(( (1-0.05 1-0.05 1-0.05)) )*1.716=1.731 *1.716=1.731 *1.716=1.731 对于初始值 S1 S1 S1 可以取前面几个数据的简单算术平均值,建议至少取 20 20 20 个字段的算术平均值作为初始值 S1 S1 S1
另外,由于数据的连续性和联赛赛季的不连续性,对本赛季的数据应采用二次指数平滑法进行处理。采用指数平滑法对近期数据进行加权并降低,以提高数据的敏感度,使其更贴近实际情况。读者可以尝试自行调整平滑常数aa,以获得更好的预测结果。计算预测值的重要目的是预测一场比赛的进球数。以英超曼联主场数据为例,每场比赛的进球数在[0-5]球范围内占97%,进球数在平均进球数附近不规则地波动。进球数在平均进球数附近不规则地波动。
简单来说就是进球比较多,下一场比赛又会回到进球少的现象。利用进球回归的特点,我们将预测值与实际值进行比较,得到进球偏差,从而预测本场比赛的进球数。我们还是使用曼联主场进球数的例子来预测进球数。我们以曼联主场进球数的例子为例:偏差区间为[-1,1] [-1,1] [-1,1],正值表示进球数会小于等于理论值,值越大回归期望越大,负值表示进球数会小于等于理论值,值越大回归期望越大,正值表示进球数会小于等于理论值,值越大回归期望越大,负值则相反。一般来说,偏差大于值,则相反。一般来说,偏差大于值足球比赛预测模型,则相反。 一般而言,偏差大于 0.5 0.5 0.5 或小于 0.5 -0.5 -0.5 或小于 0.5 是强预期。是强预期。
强烈期待。英超16-17赛季第44轮,曼联vs曼城,进球偏差0.423,进球偏差-0.224。解读为主队。解读为主队。解读为主队。
TAG: